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Abstract

A new adaptive hybrid optimization strategy, entitled squads, is pro-
posed for complex inverse analysis of computationally intensive physical
models. Typically, models are calibrated and model parameters are es-
timated by minimization of the discrepancy between model simulations
characterizing the system and existing observations requiring a substan-
tial number of model evaluations. The new strategy is designed to be
computationally efficient and robust in identification of the global op-
timum (e.g. maximum or minimum value of an objective function). It
integrates a global Adaptive Particle Swarm Optimization (APSO) strat-
egy with a local Levenberg-Marquardt (LM) optimization strategy using
adaptive rules based on runtime performance. The global strategy opti-
mizes the location of a set of solutions (particles) in the parameter space.
The LM strategy is applied only to a subset of the particles at different
stages of the optimization based on the adaptive rules. After the LM
adjustment of the subset of particle positions, the updated particles are
returned to the APSO strategy. Therefore, squads is a global strategy
that utilizes a local optimization speedup. The advantages of coupling
APSO and LM in the manner implemented in squads is demonstrated by
comparisons of squads performance against Levenberg-Marquardt (LM),
Particle Swarm Optimization (PSO), Adaptive Particle Swarm Optimiza-
tion (APSO; the TRIBES strategy), and an existing hybrid optimization
strategy (hPSO). All the strategies are tested on 2D, 5D and 10D Rosen-
brock and Griewank polynomial test functions and a synthetic hydroge-
ologic application to identify the source of a contaminant plume in an
aquifer. Tests are performed using a series of runs with random initial
guesses for the estimated (function/model) parameters. The performance
of the strategies are compared based on their robustness, defined as the
percentage of runs that identify the global optimum, and their efficiency,
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quantified by a statistical representation of the number of function eval-
uations performed prior to identification of the global optimum. Squads
is observed to have the best performance when both robustness and effi-
ciency are taken into consideration than the other strategies for all test
functions and the hydrogeologic application.

1 Introduction

Models are often used in the geosciences to indirectly estimate unknown (not
observable) physical properties of a system based on observable quantities rep-
resenting system behavior (Carrera and Neuman, 1986; Dahlin, 2001; Jessell,
2001; Meek, 2001; Poeter and McKenna, 1995). In this process, the mathemat-
ical model is designed to simulate the system behavior f(θ) for a given set of
model parameters θ representing the actual physical properties of the system.
The more accurately the model matches the observations, the more representa-
tive the model parameters are assumed to be. The process of making inferences
about model parameters, commonly referred to as inverse modeling, regularly
results in difficult optimization problems where a set of model parameters capa-
ble of acceptable representation of system behavior is sought. The optimization
process is based on a metric representing the discrepancy between the model
simulations f(θ) and the system observations. The discrepancy metric is also
called the objective function (OF; Φ(θ)), and is a function of model parameters
θ. In the parameter space, the metric is represented by a multi-dimensional
response hyper-surface; a three-dimensional surface for the case of two model
parameters. The response surface typically has a complex shape due to multiple
minima (representing multiple plausible solutions) and flat regions (representing
insensitivity of model parameters to the OF). An optimization process is based
on a series of guided model evaluations for different model parameter sets. The
challenges in the optimization process come from complications in identifying
the global minima and from requirements to execute a substantial number of
model evaluations. Frequently, the number of model evaluations needed for opti-
mization can vary from about 100 to more than 106 depending on the complexity
of the inverse model. As a result, the optimization process can be especially
difficult in real-world applications using physical models where a single forward
model simulation is performed from several minutes to more than an hour. In
these situations, even efficient parallel techniques (e.g. Vesselinov et al. (2001))
can cause substantial computational burden. Therefore it is important to de-
velop computationally efficient and robust strategies that can identify the global
minimum with a relatively small number of model evaluations.

Optimization strategies can be classified as global and local strategies (No-
cedal and Wright, 1999). Global strategies excel at robust exploration of the
response surface, identifying multiple areas of attraction; however, global strate-
gies are inefficient at locating the parameter set producing an optimal solution
within an area of attraction. As a result, in the case of real world model in-
versions, the application of global strategies may be infeasible when the model
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evaluations take a substantial amount of computational time (Keating et al.,
2010). Local strategies excel at efficiently identifying the optimal model param-
eters within an area of attraction; however, local strategies are not designed
for robust exploration of a response surface outside of an area of attraction.
The local strategies are efficient within an area of attraction because they uti-
lize local information about the gradient and curvature of the response surface.
This requires estimation of the first and second order derivatives of the dis-
crepancy metric in the parameter space. As many real world model problems
have response surfaces with multiple minima, the use of local strategies alone
is not always robust. One of the most commonly used local strategies is the
Levenberg-Marquardt (LM) strategy which has been applied in many frequently
used inverse analysis and parameter estimation codes in the geosciences such as
UCODE (Poeter and Hill, 1999) and PEST (Doherty, 2005).

Global and local strategies are complimentary; where one excels, the other
struggles, and vice versa. The benefits of hybrid global/local strategies have
been demonstrated previously (Noel and Jannett, 2004; Leontitsis, 2004; Zhang
et al., 2007; Ghaffari-Miab et al., 2007). We introduce a new development in
hybrid optimization, coupling recent developments in Adaptive Particle Swarm
Optimization (APSO) and a Levenberg-Marquardt (LM) strategy producing a
novel adaptive hybrid strategy entitled squads. The strategy applies an LM
strategy to a subset of particles at different stages of an APSO strategy based
on adaptive rules. After the LM update of the particle position, the particle
is passed back to the APSO strategy and continues to evolve based on APSO
rules. In essence, squads is a global strategy utilizing local optimization speedup.
Squads is specifically designed to be a robust and computationally efficient strat-
egy capable of identifying the global minimum with a relatively small number of
model evaluations in complex inverse problems. The name squads refers to the
hierarchical structure of the population of solutions in the algorithm, similar to
the APSO algorithm TRIBES (Clerc, Jul. 2004).

The squads strategy is tested using the Rosenbrock (Rosenbrock, 1960) and
Griewank (Griewank, 1981) polynomial test functions. Squads is also applied
to solve a hydrogeological problem related to identification of the source of a
contaminant plume in an aquifer; this problem is frequently solved in appli-
cations related to protection and remediation of groundwater resources (Bagt-
zoglou et al., 1991; Snodgrass and Kitanidis, 1997; Atmadji and Bagtzoglou,
2001; Sun et al., 2006; Dokou and Pinder, 2009). In order to demonstrate the
relative benefits of the hybrid strategy of squads, its performance is compared
to open-source distributions of LM (Lourakis, Jul. 2004), PSO (Particle Swarm
Central, 2006), and APSO (Clerc, Jul. 2004) strategies. Additionally, squads is
compared to hPSO (Leontitsis, 2004), an open-source hybrid strategy that com-
bines PSO and the Nelder-Mead downhill simplex strategy (Nelder and Mead,
1965) implemented in the MATLAB R© (The MathWorks Inc., 2003) computing
environment.
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2 Particle Swarm Optimization

Sociobiologists have theorized that individuals within a population can benefit
from the previous knowledge and experience of other members of the popula-
tion while searching for sporadically distributed food sources (Wilson, 1975).
The ubiquity of schooling and flocking tendencies common among many species
suggests that this is an efficient, cost-effective strategy for the survival of in-
dividuals. It is easy to recognize the analogy of organisms searching for food
sources and mathematical strategies searching for optimal solutions. This recog-
nition led to the development of PSO by Kennedy and Eberhart (1995), building
on previous research intended to graphically simulate the flocking behavior of
birds. Certain aspects of the flocking behavior of this early research has been
eliminated in order to improve the strategy’s performance in global optimiza-
tion, leading to the use of the term “swarm” to describe the graphical behavior
of PSO.

The development of PSO has produced a parsimonious optimization strat-
egy modeling a population of randomly selected initial solutions (particles)
by their position and velocity (Clerc, 2006). In a D-dimensional parameter
space, the position and velocity of the ith particle can be represented as pi =
[pi,1, pi,2, . . . , pi,D] and vi = [vi,1, vi,2, . . . , vi,D], respectively. An empirical for-

mula for determining the swarm size S has been suggested as S = 10 + 2
√
D

(Particle Swarm Central, 2006). Particles retain a record of the best location
they have visited so far denoted as bi = [bi,1, bi,2, . . . , bi,D]. Particles are also
informed of the best location that K other randomly chosen particles have vis-
ited, denoted as gi = [gi,1, gi,2, . . . , gi,D]. A standard value for K is 3 (Particle
Swarm Central, 2006). These networks of informers are reinitialized after it-
erations with no improvement to the global best particles of the swarm. The
velocity of the ith particle in the jth dimension is updated from strategy itera-
tion k to k + 1 as

vi,j(k+1) = wvi,j(k)+c1r1(bi,j−pi,j(k))+c2r2(gi,j−pi,j(k)), k = {1, . . . , D},
(1)

where w is a constant referred to as the inertia weight, c1 and c2 are constants
referred to as acceleration coefficients, r1 and r2 are independent uniform ran-
dom numbers in [0, 1]. The parameter w controls the level of influence between
its previous and current particle displacement, c1 and c2 scale the random influ-
ence of (1) the particle memory (past particle locations in the parameter space),
and (2) the current network of particle informers (current informer locations in
the parameter space), respectively. A limitation on the magnitude of the veloc-
ity Vmax is commonly employed. The particle position is updated during each
strategy iteration as

pi,j(k + 1) = pi,j(k) + vi,j(k + 1), k = {1, . . . , D}. (2)

It has been recognized that the selection of w, c1, c2, and Vmax tune the
performance of PSO, modifying the balance between exploration (spreading
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the particles throughout the parameter space) and intensification (focusing the
particles within an area of attraction). Manual tuning of PSO’s parameters can
be a delicate task. Adaptive PSO (APSO) strategies have emerged in order to
reduce or eliminate the often difficult and time-consuming process of parameter
tuning of PSO (Cooren et al., 2009).

One of the algorithmic variants of APSO is TRIBES (Clerc, 2006) (TRIBES
is not an acronym, but we follow the convention of all capital letters as proposed
by its designer), which eliminates the tuning of the PSO strategy parameters.
The strategy has been proven competitive with well-known strategies on a suite
of test problems (Cooren et al., 2009). As the name suggests, TRIBES parti-
tions the particles into groups, referred to as tribes, intended to facilitate the
exploration of multiple areas of attraction. In this way, a hierarchical structure
is established where the swarm is composed of a network of tribes, and each
tribe is a network of particles. The intent is to eliminate parameter tuning
as the swarm evolves from an initial set of tribes, and the tribes evolve from
single particles based on rules governing the evolution of the swarm topology
and rules for generation and elimination of entire tribes and individual particles
within the tribes. The particle within a tribe with the lowest/highest OF for
minimization/maximization is considered the shaman of the tribe. Information
is shared only between the particles within a given tribe. Information between
the tribes is shared only through the shamans. In this way, the displacements
of non-shaman particles are influenced by the shaman of their tribe, while the
displacements of the shamans are influenced by the best shaman in the swarm.
The source code for TRIBES is available from Clerc (Jul. 2004).

3 Squads adaptive hybrid optimization

Various approaches have been introduced to couple the global search capabili-
ties of PSO with the efficiency of first and second-order local strategies. Clerc
(1999) introduced a PSO strategy that adjusts particle locations based on ap-
proximations of the gradient of the OF utilizing the OF values of the current
particle locations. Noel and Jannett (2004) developed a hybrid PSO strategy
incorporating gradient information directly in the calculation of particle veloc-
ity. Leontitsis (2004) coupled a PSO strategy with the Nelder-Mead simplex
strategy (hPSO, Lagarias et al. (1998)), Zhang et al. (2007) coupled PSO and
back-propagation to train neural networks. Ghaffari-Miab et al. (2007) devel-
oped a hybrid strategy, iterating between PSO and BFGS quasi-Newton opti-
mization. We present a hybrid strategy called squads that couples an APSO
strategy with a Levenberg-Marquardt (LM) strategy. The following provides a
detailed description of a fine-tuned coupling of APSO and LM based on adaptive
rules, where the LM optimization is applied to improve the locations of a subset
of selected particles (the shamans) in the course of the optimization process.
The current APSO strategy implemented in squads is TRIBES (Clerc, 2006),
and the LM optimization is performed using the LevMar library (Lourakis, Jul.
2004).

5



Much of the time-consuming and difficult tuning required of many optimiza-
tion strategies is reduced in squads utilizing adaptive rules. The APSO strategy
does not require the specification of optimization parameters (Clerc, 2006), and
the applied LM strategy is optimized to work well on many problems using de-
fault and internally estimated optimization parameters (Lourakis, Jul. 2004).
The adaptive rules implemented in squads to control the performance of LM
speedups during the APSO optimization are also designed to be general and
capable to tackle problems with different complexity.

A flow diagram of the squads strategy is presented in Figure 3. Tables 1
and 2 describe the particle initialization and displacement rules and their selec-
tion within squads. For consistency with other global strategies discussed here,
squads is initialized with Nt = S = 10 + 2

√
D mono-particle tribes, where Nt

is the number of tribes in the swarm and S is the number of particles. How-
ever, squads can also be initiated with a single mono-particle tribe and allow
the swarm to develop based on the built-in adaptive rules. If provided, one
of the initial particles is set to predefined values (rule 1 in Table 1), while the
remaining positions of the initial particles are determined according to rule 5 in
Table 1.

Each iteration of the strategy is initiated by determining the informers for all
the particles. For non-shaman particles, this will be the shaman of their tribe.
A shaman is the particle with the best (e.g. lowest for minimization) OF value
within the tribe. For shaman’s, this will be the shaman with the best OF value
within the swarm, referred to as the best shaman. Particle positions are then
updated according to the rules described in Table 2. Particles are initialized to
use displacement rule 1. After informers are determined, particle positions are
updated based on their currently selected displacement rule.

The decision to adapt a tribe is based on whether the tribe has demonstrated
sufficient improvement during the previous strategy iteration. This is performed
stochastically, by comparing the fraction of particles in the tribe that improved
their location in the last move with a random number between 0 and 1. If the
fraction is greater than the random number, the tribe is considered a good tribe,
and the worst particle is removed from the tribe. This eliminates unnecessary
model evaluations, focusing the attention of the tribe on the good particles.
Otherwise, the tribe is considered a bad tribe, and a particle is added to the
tribe (refer to Table 1 for details on particle initialization rule selection) and a
randomly selected dimension of a randomly selected particle in the tribe (other
than the shaman) is reinitialized randomly. Adding a particle to a bad tribe is
intended to increase the exploration of the parameter space by the tribe.

The swarm adaptation occurs either every Nt ∗(Nt−1)/4 strategy iterations
or if the swarm is labeled by LM as a bad swarm. A swarm is considered a bad
swarm if LM speedup was performed in the previous iteration, and the OF was
not reduced by at least 2/3 for all the LM updated shamans. A mono-particle
tribe is added to the swarm if it is considered bad according to rule 5 in Table 1.
The tribe led by a shaman with the worst OF in the swarm is removed if the
swarm is considered good.

Next, particle displacement rule selections are updated. Particle displace-
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Update positions

Initialize swarm

Select informers

E ≥ Emax?
Yes

Adapt tribes

No

Adapt swarm?
No

Yes

Adapt swarm

Update strategies

No

Update shamans

with LM

Update shamans

with LM?

E ≥ Emax?
Yes

Yes

No

E ≥ Emax?

End

No

Yes

random search

Shaman local

Figure 1: Flow diagram of squads strategy. E is the current number of model
evaluations and Emax is the allowable number of model evaluations. Decisions
to “adapt swarm” or “update shamans with LM” are determined by adaptive
rules.
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Table 1: Particle initialization rules and their selection criteria.

Particle initialization rules:

1. User specified

2. Randomly chosen position within parameter space:
pnewj

=U(pminj
, pmaxj

), j = 1, . . . , D

3. Randomly chosen within hyperparallelepid surrounding the best position
of the swarm with dimensions (2 · rj) determined by Euclidean distance
between the swarm’s and tribe’s best position:
rj = |pbestj − ptribe bestj | j = 1, . . . , D
pnewj

=U(pbestj − rj , pbestj + rj)j = 1, . . . , D

4. On one of the vertices of the parameter space with equal probability of
being the max or min of each dimension:
if (U(0, 1) < 0.5) then pnewj

= pminj
, else pnewj

= pmaxj
j = 1, . . . , D

5. Randomly chosen within the largest empty hyperparallelepid of the pa-
rameter space

Criteria Initialization rule selection
First particle of the strategy 1
If initial population is greater

5
than 1, other initial particles
Particle added to “bad” tribe (tribe adaptation) randomly chosen between 2 and 5
Mono-particle tribe added (swarm adaptation) 5
LM unable to reduce OF of shaman by 2/3 5
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Table 2: Particle displacement rules and their selection criteria based on the
status of the particle. N(µ, σ) is a normal distribution with a mean µ and
standard deviation σ, U(a, b) is a uniform distribution with minimum a and
maximum b, f(−) is the value of the objective function, g = [g1, g2, . . . , gD]
is the location of the particles designated informer, b = [b1, b2, . . . , bD] the
particle’s current best location, and minj and maxj are the minimum and
maximum values for the jth dimension, respectively.

Particle displacement rules:

1. pj =U(minj ,maxj) j = 1, . . . , D, change displacement rule to 2 for next
time

2. pj =N(gj , 0.74 · |bj − gj |)
or, if no informer
pj =N(bj ,max(bj −minj ,maxj − bj))

3. pj = f(g)
f(g)+f(b) · U(bj − |bj − gj |, bj + |bj − gj |) + f(b)

f(g)+f(b) · U(gj − |bj −
gj |, gj + |bj − gj |)
or, if no informer
pj =N(bj , 3 ·max(bj −minj ,maxj − bj))

Particle status Displacement rule selection
(–=) randomly choose any rule other than current one
(==) randomly choose between rule 2 and 3

(+=) or (++) change to rule 1 with 50% probability
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ment rule selections are modified based on whether or not (1) their position has
improved in the last move and (2) their best overall position has improved in the
last move. Following the convention of Clerc (2006), we use a (+) to indicate
improvement, (=) the same OF value, and (–) a worse position. The particles
performance can then be denoted as one of the following: (–=), (==), (+=),
and (++), where the first symbol indicates if the particle improved its position
in the last move, and second symbol indicates if the overall best position of the
particle improved in the last move. Note that the best overall performance can
only stay the same or improve, and an improvement in the overall performance
indicates an improvement over the last position. Table 2 lists the displacement
rule selection based on particle performance.

After the swarm adaptation, squads checks whether or not to update the
shamans using LM. LM updating is turned off in squads if none of the shamans
reduces the OF of the previous shamans by more than 2/3 during the last LM
updating. LM updating will be restarted when the best OF of the previously ob-
tained OF during LM has been reduced by an order of magnitude by the APSO
strategy. This postpones LM until the global APSO strategy has identified a
position with a significant improvement, which will perhaps be a previously
unidentified area of attraction. After the LM optimization, the new shaman
location is used in the APSO strategy.

In contrast with the APSO strategy, the LM strategy requires that the OF
be represented as a summation of components at least equal to the number of
parameters as

Φ(θ) =

N∑
i=1

Φi(θ), (3)

where θ is a vector of model parameters andN is equal or larger than the number
of model parameters. This allows the LM strategy to estimate the local gradient
and curvature of the response surface in the parameter space. These calculations
utilize numerical derivatives of the OF components in equation 3 with respect to
the model parameters (also called the Jacobian matrix). Based on the Jacobian
matrix, the LM strategy also estimates the second-order derivatives of the OF
components with respect to model parameters (also called a Hessian matrix).
The second-order derivatives approximate the local curvature of the response
surface. The LM strategy searches for the local optimum by adaptive adjust-
ment between first and second-order optimization techniques (Levenberg, 1944;
Marquardt, 1963). Frequently in the case of model inversion problems, the OF
in equation 3 is represented by the discrepancy between model simulated values
fi(θ) and corresponding observations oi, where i = 1, ..., N , and N is now the
number of observations. For example, frequently Φ(θ) is computed as

Φ(θ) =

N∑
i=1

Φi(θ) =

N∑
i=1

(fi(θ)− oi)2. (4)

Squads estimates the first-order derivatives using a finite difference approach

10



applied in the LevMar library (Lourakis, Jul. 2004).
The following criteria are defined by default in LevMar to terminate the LM

optimization (Lourakis, Jul. 2004), and applied in the LM updating of squads
as well: (1) the maximum change in any parameter is less than 10−5; (2) the
relative change in the L2 norm of the change in the parameter values is less than
10−5 of the L2 norm of the parameter values; (3) the OF reaches a value of zero;
(4) the Jacobian matrix is close to singular, and (5) the maximum number of
LM iterations (i.e. derivative approximation and Marquardt parameter value
exploration) is achieved (50 when standalone LM is performed; 8 in squads).
The criteria are designed to terminate LM once it successfully identifies a local
optimum. Typically, criteria 1, 2, and 5 terminate the LM updating in squads
(the termination criteria of the LM updating within squads do not terminate the
squads run). Squads is terminated when either one of the following conditions
are met: (1) Emax, the number of allowable model evaluations, is exceeded or
(2) the OF reaches below a predefined cutoff value.

The final step of each iteration is to perform a random local search in the
empty space around each shaman (Clerc, Jul. 2004). In this step, a random
position within the largest hyperparallelepid centered on the tribe’s shaman,
void of other particles, is evaluated. If the position is an improvement over the
current shaman position, the shaman is moved to this location. Otherwise, the
position is forgotten.

Global strategies in general, including APSO, are designed to operate on
a bounded parameter space. The parameter ranges are typically predefined
depending on the physical constraints or prior knowledge about the parameter
distributions. However, the LM optimization by default works in an unbounded
parameter space. There are various techniques to constrain an LM strategy
within a parameter space, but these techniques typically have a negative impact
on LM performance. To avoid this, squads operates in a transformed parameter
space. For example, an element of the parameter vector θ is transformed as

θ̂ = arcsin

(
θ − θmin

θmax − θmin
· 2− 1

)
, (5)

where θ̂ is the transformed parameter, and θmax and θmin are the upper and
lower bounds for parameter θ, respectively. The APSO strategy is performed
in the transformed parameter space bounded within [−π/2;π/2] in all dimen-
sions, while the LM updating is performed unconstrained in the transformed pa-
rameter space. Model (function) evaluations are performed on de-transformed
parameters by

θ = θmin +

(
sin(θ̂) + 1

2

)
(θmax − θmin). (6)

In this way, the LM updating is unaware of parameter boundaries and is unaf-
fected by performance issues associated with calculating numerical derivatives
near boundaries. It should be noted that in the process of the LM updating,
the transformed parameters can be moved outside of the [−π/2;π/2] range;
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however, the transformed parameters are returned to equivalent values within
[−π/2;π/2] before being passed back to the APSO strategy by

θ̂APSO = arcsin(sin(θ̂LM )). (7)

where θ̂LM represents the unconstrained transformed parameters resulting from
LM updating and θ̂APSO represents the constrained transformed parameters
passed back to the APSO strategy, thereby ensuring that APSO receives pa-
rameters within its explicitly defined, bounded parameter space. It is important
to note that θ̂APSO and θ̂LM are equivalent in the non-transformed parameter
space.

4 Test functions

The squads strategy is tested by optimizing the Rosenbrock and Griewank test
functions. The Rosenbrock and Griewank functions present difficult optimiza-
tion problems exhibiting frequently observed complexities in response surface
topology in real world problems (e.g. Rosenbrock (1960); Griewank (1981); Clerc
(2006); Cooren et al. (2009)).

The response function defined by the Rosenbrock function is comprised of
a large valley with an ill-defined, shallow global minimum. For D ≤ 3, the
function is unimodal with a global minimum at x = 1 (where 1 = [1, . . . , 1]).
For 4 ≤ D ≤ 7, a local minimum exists at (x1, x2, . . . , xD) = (−1, 1, . . . , 1) in
addition to the global minimum, while for D > 7, multiple suboptimal local
minima exist (Shang and Qiu, 2006). In the case of two model parameters, the
shape of the Rosenbrock function is presented in Figure 2. The Rosenbrock
function generalized to any number of dimensions greater than or equal to two
can be expressed as

Φr(x1, . . . , xD) =

D−1∑
i=1

(1− xi)2 + 100(xi+1 − x2i )2. (8)

The estimation of the local gradient and curvature of the response surface by
LM requires the test function to be represented as a summation of parts as in
equation 3. The summation components of Φr(x1, . . . , xD) can be expressed as

Φr,2i−1(xi) = (1− xi)2 i < D (9)

and

Φr,2i(xi, xi+1) = 100(xi+1 − x2i )2 i < D (10)

producing 2(D − 1) OF components where equation 9 and 10 define the odd
and even numbered components, respectively; therefore, the number of compo-
nents (called also “observations” in the case inverse problems) in the 2D, 5D,
and 10D cases are 2, 8, and 18, respectively. The LM strategy uses the deriva-
tives of Φr,i(x1, . . . , xD) with respect to model parameters to evaluate the local
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Figure 2: Rosenbrock and Griewank polynomial test functions with global min-
ima at (1,1) and (0,0), respectively. Note the different parameter ranges on the
top and bottom rows. The top row shows the parameter space explored by the
optimization strategies. The bottom row focuses on the parameter space near
the respective global minima.
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gradient and curvature of the response surface. In most real world problems,
the analytical computation of derivatives is not feasible. Therefore, in all the
examples presented below, the derivatives are computed numerically using a
finite difference approach, even though the analytical derivation in this case is
trivial. Other alternative representations of Φr as a sum of components are also
possible.

The D-dimensional Griewank function is defined as

Φg(x1, . . . , xD) = 1 +
1

4000

D∑
i=1

x2i −
D∏
i=1

cos

(
xi√
i

)
. (11)

The Griewank function has numerous local areas of attraction, but a single
global minimum of zero at x = 0. In the two-dimensional case, the function
has the shape of an “egg carton” that is depressed in the center, as depicted in
Figure 2).

The summation components can be defined as

Φg,i(x1, . . . , xD) =
1

D
+

x2i
4000

− 1

D

D∏
i=1

cos

(
xi√
i

)
(12)

Therefore, the number of components (“observations”) equals the number
of model parameters.

The multidimensional Griewank function is important for testing of hybrid
optimization strategies because it becomes more difficult to minimize for global
strategies as its dimensionality increases (Locatelli, 2003). However, although
counterintuitive, the Griewank function becomes easier to minimize for local
strategies as the dimensionality increases. Therefore, with the increase in di-
mensionality, it is expected that LM performance will improve while the PSO,
TRIBES and hPSO performance will decrease. For different parameter-space
dimensionality, the performance of hybrid strategies will depend on how effi-
ciently they adaptively balance between the local and global strategies. At low
dimensionality (D = 2), the hybrid strategies should benefit from the global
strategy; at high dimensionality, the hybrid strategies should benefit from the
local strategy.

5 Contaminant source identification test case

Optimization strategies are commonly employed to calibrate physics-based mod-
els to available observations. We demonstrate the optimization strategies on a
hydrogeologic application to identify the center (xs, ys) and dimensions (xd, yd)
of a parallelepiped contaminant source in an aquifer using observations of con-
taminant concentrations from monitoring wells near the expected source loca-
tion. The synthetic groundwater flow and transport problem is three-dimensional
and semi-infinite, the top model boundary aligns with the top of the aquifer,
and the model extends to infinity laterally and with depth. The locations of
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Figure 3: Map of monitoring well locations. The “true” source is shown as a
solid rectangle. The search domain for xs and ys is shown as a dotted rectangle.
The contaminant concentration plume at t = 49 years is represented by the
color map.

the monitoring wells, depths below the aquifer top boundary of the top and
bottom of the screens, times of observation after the contaminant release, and
observed contaminant concentrations are presented in Table 5. The parameter
values used to generate the “true” concentrations at the monitoring wells and
the minimum and maximum parameter values allowed in optimization runs are
presented in Table 5. The “true” location of the source, the location of monitor-
ing wells, and contaminant concentrations at t = 49 years since the contaminant
was released are presented in Figure 3. A similar model is presented in Harp
and Vesselinov (2011) with additional details.

The objective function for the contaminant transport test case is a sum-of-
the-squared-residuals (SSR) expressed as

Φ(θ) =

N∑
i=1

(ĉi(θ)− ci)2, (13)

where ĉi(θ) is the ith simulated concentration resulting from θ, ci is the ith

observed concentration, and N is the number of observations. In summary,
there are 4 unknown model parameters constrained by 20 observations.

The simulated contaminant concentrations (ĉ) are produced from an analyt-
ical contaminant transport model encoded in MADS (Wexler, 1992; Wang and
Wu, 2009; Vesselinov, 2010) (refer to Harp and Vesselinov (2011) for additional
simulation details). Due to the rounding of the observed concentrations, a value
of Φ=0.55 is obtained from the true parameter values.

The response surface resulting from equation 13 plotted as a function of xs
and ys is presented in Figure 4. The values plotted in Figure 4 are the lowest
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Well x [m] y [m] ztop [m] zbot [m] t [a] c [ppb]
w01 1503 1954 5.57 12.55 49 0
w02 2113 1479 36.73 55.14 49 0
w03 418 950 0 15.04 49 0

w04 1377 1534 13.15 20.41
44 350
49 432

w05 3268 1074 26.73 33.71 49 0
w06 2112 2294 69.01 83.98 49 0
w07 2086 2284 11.15 18.19 49 0
w08 2770 2119 4.86 11.87 49 0
w09 975 1450 3.66 10.09 49 981

w10 723 1599
3.32 9.63 49 1.1
23.2 26.24 49 0.1

w11 1850 1368
4.94 7.99 49 22
32.46 35.48 49 0.3

w12 1761 1636
3.59 6.64 49 15
32.51 38.61 49 0.17

w13 1485 1149
3 6 50 72
36 42 50 0.26

w14 972 869 3 6 50 0
w15 940 1160 3 6 50 38

Table 3: Well coordinates, screen top (ztop) and bottom (zbot) depths below the
water table, and year and value of observed contaminant concentrations.

xs[m] ys[m] xd[m] yd[m]
‘true’ 1124 1393 258 273
min 210 1230 1 1
max 1460 1930 500 500

Table 4: ‘True’, minimum, and maximum parameter values for the contaminant
transport test case.
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Figure 4: Contaminant source identification response surface for contaminant
source locations defined by xs and ys. The minimum OF value for each combi-
nation of xs and ys are plotted considering allowable ranges for source lateral
dimensions, xd and yd.

values for Φ at each combination of xs and ys considering allowable ranges for
xd and yd. In other words, this is the response surface that the strategies would
traverse if they knew the optimal values for xd and yd for each combination of
xs and ys. Note that the actual 4D response surface is more complicated than
this 2D representation. Features from both the Griewank and Rosenbrock test
functions can be seen in this representation of the response surface with multiple
areas of attraction (three suboptimal minima and one global minimum), regions
of parameter insensitivity (flat regions), and narrow, curved (banana-shaped)
valleys.

Even though the contaminant transport model is analytical, the computa-
tional time is substantially higher than that for the test functions. Within
MADS, the number of function evaluation per second is 4̃0,000 for the test
functions compared to 4̃00 for the contaminant transport model. For hPSO,
the number of function evaluations per second is 1̃1,000 for the test functions
compared to 2̃ for the contaminant transport model; the substantial increase in
hPSO computation time between the test functions and the hydrogeologic appli-
cation is due to external coupling between the Matlab computing environment
(applied to execute hPSO) and external C based transport simulator.

6 Results and discussion

The performance of squads on the Rosenbrock and Griewank functions is com-
pared with (1) LM, (2) PSO, (3) TRIBES, and (4) hPSO. The LM strategy
is an implementation of LevMar (Lourakis, Jul. 2004) (the same strategy as
applied in squads), PSO is an implementation of Standard PSO 2006 (Particle
Swarm Central, 2006), TRIBES is an APSO strategy implemented in the code
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described in Clerc (2006), hPSO is freely available hybrid optimization code
from Leontitsis (2004). LM, PSO, TRIBES and squads are built into the code
MADS (Vesselinov, 2010), which is utilized for all analyses except hPSO. The
hPSO analysis is performed using MATLAB version 7.8.0.347 (R2009a) (The
MathWorks Inc., 2003). The strategy parameters (i.e. optimization parameters)
for PSO and hPSO are set to values that have been demonstrated to perform
well in many test cases (Particle Swarm Central, 2006) as w = 0.72, c1 = 1.2
and c2 = 1.2 (refer to equation 1).

The strategies are tested on both functions by performing 1,000 independent
optimizations runs with random initial guesses distributed in the searchable pa-
rameter space bounded by [-100:100] for all dimensions. In the case of LM, the
searchable parameter space is not bounded. This did not influence its perfor-
mance as the OFs of both functions have generally increasing trends towards
the boundaries (Figure 2). Optimization success is defined as identifying a so-
lution with all parameters values within 0.1 of the global minimum parameter
values (x = 1 for the Rosenbrock function and x = 0 for the Griewank func-
tion). The maximum number of function (model) evaluations (Emax) for the
strategies is set to 20,000. However, in performed analyses, LM runs terminate
at fewer function evaluations as the convergence criteria of LM are designed to
terminate its run once it identifies a minimum in the response surface. The
ability of LM to identify the global minimum depends on whether the minimum
encountered by LM is local or global.

Figures 5 and 6 present boxplots for the number of function evaluations for
successful runs for 2D, 5D, and 10D Rosenbrock and Griewank functions, re-

spectively. In the figures, the boxes represent the 25th to 75th percentile ranges,
the bars inside of the boxes represent the median values, and the whiskers rep-
resent the minimum and maximum values. The fraction of successful runs out
of the attempted runs are presented above the boxes. Note that the statistical
definitions of the boxplots are not accurate for the cases where the number of
successful runs does not present a statistically significant sample. The robust-
ness of the strategies is defined as the percentage of successful runs (i.e. fraction
of successful runs * 100). The efficiency of the strategies is summarized by the
statistics presented in the boxplots.

For the Rosenbrock function (Figure 5), the robustness of LM decreases
from the 2D case to the 10D case from 36% to 0%. The robustness of PSO
and TRIBES is comparable in the 2D case, albeit with TRIBES exhibiting
higher efficiency in general. In the 5D case, PSO has a higher robustness than
TRIBES, however, at lower efficiency. hPSO achieves 100% robustness in the
2D and 5D cases, with a significant decrease in efficiency from the 2D to 5D
case. The robustness of hPSO decreases significantly in the 10D case with only
a single success out of 1000 (0.1%). In the 10D case, LM, PSO, TRIBES,
and hPSO exhibit low robustness. Squads is 100% robust in all cases. The
efficiency is observed to decrease from the 2D case to the 10D case for squads;
however, the efficiency of squads is greater than PSO, TRIBES, and hPSO in
all cases. The efficiency of squads and LM are similar for the 2D and 5D cases
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Figure 5: Boxplots of number of function evaluations to reach the global min-
imum for the 2D, 5D, and 10D Rosenbrock function. The boxes represent the

25th to 75th percentile ranges, the bars inside of the boxes represent the me-
dian values, and the whiskers represent the min and max values. Note that the
statistical definitions are not accurate when the number of successful runs does
not present a statistically significant sample. The fraction of successful runs out
of 1000 for each strategy is stated above the boxes. The maximum allowable
function evaluations for each run is 20,000.
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Figure 6: Boxplots of number of function evaluations to reach the global min-

imum for the 2D, 5D, 10D Griewank function. The boxes represent the 25th

to 75th percentile ranges, the bars inside of the boxes represent the median
values, and the whiskers represent the min and max values. Note that the sta-
tistical definitions are not accurate when the number of successful runs does
not present a statistically significant sample. The fraction of successful runs out
of 1000 for each strategy is stated above the boxes. The maximum allowable
function evaluations for each run is 20,000.
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(Figure 5). However, in these two cases, the robustness of squads is 100% which
is considerably better than the robustness of LM (36% for 2D and 4% for 5D).
In the 10D case, LM did not produce a single successful run while squads is still
100% robust.

For the Griewank function (Figure 6), as expected (see Locatelli (2003)), the
robustness of LM increases as the dimensionality of the problem increases. In the
2D case, which is the most difficult for a local gradient-based strategy (Locatelli,
2003), the robustness is only 3%. Since LM is a local strategy, it is not surprising
that LM frequently converges at non-optimal minima. As expected for the 2D
case, the global strategies (PSO, TRIBES, hPSO and squads) are substantially
more robust than LM. The robustness of PSO and TRIBES (both purely global
strategies) decrease significantly from the 2D to the 5D case, while decreasing
only slightly from the 5D to the 10D case (the efficiency of PSO decreases also).
hPSO is 100% robust for the 2D case; however, is unable to locate the global
minimum in the 5D and 10D cases. Squads is 100% robust in the 2D and 10D
cases and 80% robust in the 5D case.

As already discussed, the multidimensional Griewank function is important
for testing of hybrid strategies such as squads. For different parameter-space
dimensionality, the performance of squads is influenced by the ability of the
adaptive rules in the optimization algorithm to balance between the local (LM)
and global (APSO) strategies. With the increase of dimensionality, the local
gradient-based (LM) strategy becomes more robust, while the global (APSO)
strategy becomes less robust. At D = 2, squads is both more robust and
efficient than the other global methods (Figure 6). At D = 10, squads benefits
from the local gradient-based search strategy which performs better at higher
dimensions. The 5D Griewank function is observed to be the most difficult
test problem for squads as both the local and global strategies struggle in this
dimensionality of the Griewank function. Nevertheless, for the 5D case, squads
produces the highest robustness (80%) and efficiency (excluding LM) of all the
tested strategies; squads is 100% robust if the maximum number of function
evaluations is increased to 70,000 (results are not shown here). In summary for
the Griewank cases, squads is observed to have the best performance when both
robustness and efficiency are taken into consideration than the other strategies
(Figure 6).

The performance of the strategies is demonstrated on the hydrogeologic ap-
plication in contaminant source identification presented in Section 5. A boxplot
of the necessary function evaluations for successful runs is presented in Figure 7.
As with the test functions, 1000 runs are performed for each strategy, except
for hPSO, where only 100 runs are performed due to the computational expense
of evaluating the contaminant transport model from hPSO (2̃.2 function evalu-
ations per second). The maximum number of function evaluations allowed for
each optimization run is limited to 5,000. An optimization run is considered
successful if the objective function is reduced below a value of 1. This ensures
that the solution has reached the area of attraction around the global minimum
as the suboptimal minima of the response surface are all greater than 1. As
with the test functions, it is observed that LM is efficient on the hydrogeologic
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Figure 7: Boxplots of number of function evaluations to reach the global mini-
mum for the hydrogeologic application presented in Section 5. The boxes rep-

resent the 25th to 75th percentile ranges, the bars inside of the boxes represent
the median values, and the whiskers represent the min and max values. Note
that the statistical definitions are not accurate when the number of successful
runs does not present a statistically significant sample. The fraction of success-
ful runs (out of 1000 for LM, PSO, TRIBES, and squads; out of 100 for hPSO)
is stated above the box. The maximum allowable function evaluations for each
run is 5000.

application, but only approximately 26% robust. PSO and TRIBES are ob-
served to be inefficient and not robust in this case requiring high numbers of
function evaluations with approximately 3% and 0.7% robustness,respectively.
hPSO demonstrates some robustness at 69%, but with low efficiency in gen-
eral with a large variability in the necessary number of function evaluations.
squads demonstrates high robustness at 100% with higher efficiency than PSO,
TRIBES, and hPSO. While the efficiency of LM is better than squads in this
case, this is with a significantly lower robustness.

It is important to emphasize in all test cases, squads can converge at a rela-
tively low number of model evaluations when compared to PSO, TRIBES and
hPSO. This is manifested by the minimum values of the boxplots in Figures 5,
6, and 7. Furthermore, the statistical distributions of the number of model eval-
uations required to achieve the global minimum for squads are skewed to the
left in all cases (Figures 5, 6, and 7). This demonstrates that more frequently
squads may converge with lower number of functional evaluations.

7 Conclusions

A new adaptive global hybrid optimization strategy called squads is developed
for solving computationally intensive inverse problems involving models repre-
senting the behavior of complex systems. Squads utilizes a (1) global strategy
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for robust exploration of the parameter space to identify multiple areas of at-
traction and (2) a local gradient-based search strategy to efficiently locate the
optimum of areas of attraction. In essence, squads is a global strategy that
implements a local gradient-based optimization speedup. Squads is sufficiently
robust in avoiding becoming stuck in local minima during the optimization as
typically observed in the case of local gradient-based strategies. The new strat-
egy reduces the number of model runs typically required of other frequently
used global strategies such as Particle Swarm Optimization (PSO) by efficiently
exploring local areas of attraction.

The strategy is tested on 2D, 5D, and 10D variations of two commonly used
polynomial test functions: the Rosenbrock and Griewank functions. The strat-
egy is also demonstrated on a synthetic hydrogeologic application to identify
the source center and source dimensions of a contaminant plume in an aquifer
based on observed contaminant concentrations at monitoring wells. The robust-
ness of a strategy is defined as the percentage of runs that identify the global
minimum in each test case. The efficiency of a strategy is evaluated through a
statistical representation of the number of function or model evaluations neces-
sary to identify the global optimum. In all cases, squads is as robust or more
robust than the other tested strategies: LM, PSO, TRIBES, and hPSO. Squads
is more efficient than PSO, TRIBES, and hPSO in all cases. For the Rosenbrock
function, squads has comparable efficiency to LM, however, in these cases, the
robustness of squads (100%) is considerably better than the robustness of LM
(less than 36%). For other optimization problems, squads may converge for
the same number of functional evaluations as LM (Figure 6). For the Griewank
function and hydrogeologic application, LM successfully converges to local areas
of attraction; however, these were not always the global minimum. For the 2D
Rosenbrock function, LM converges within an area of attraction shaped as a
narrow curved valley where the gradient is so small that it appears to LM that
it has identified a minima (the valley contains the global minimum).

The application of the squads strategy is performed using the code MADS
(Vesselinov, 2010). MADS and other files needed to execute the synthetic prob-
lems presented in this paper are available at http://www.ees.lanl.gov/staff/monty/codes/mads.html
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